
Getting Multicore Performance
with UPC

Yili Zheng

Lawrence Berkeley National Lab

Berkeley UPC Group

• PI: Katherine Yelick

• Group members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

• Former members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala ,
Mike Welcome

• A joint project of LBNL and UC Berkeley

2/26/2010 2SIAM PP 10 -- Getting Multicore Performance with UPC

Outline

• Introduction of PGAS and UPC

• UPC examples

• UPC on shared-memory machines

• Auto-tuned multi-threaded Collectives

• Scheduling and load balancing

• Performance tuning

2/26/2010 3SIAM PP 10 -- Getting Multicore Performance with UPC

Features in Computer Architectures

• Many cores on a chip, multi-sockets in a node
– Global address space
– May not be cache coherent

• Non-Uniform Memory Access
– Multi-level memory hierarchies
– Private vs. shared
– Local vs. remote

• Hybrid systems
– Heterogeneous processors
– Separate memory systems

2/26/2010 4SIAM PP 10 -- Getting Multicore Performance with UPC

Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private

segments for data placement optimizations
 Friendly to non-coherent cache architecture

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

2/26/2010 5SIAM PP 10 -- Getting Multicore Performance with UPC

UPC Programming Models

SPMD Fork-Join

Synchronizations
2/26/2010 6SIAM PP 10 -- Getting Multicore Performance with UPC

UPC Pointers

int *p1; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /* shared pointer to local memory */

shared int *shared p4; /* shared pointer to shared space */

Shared

G
lo

b
al

 a
d

d
re

ss

sp
ac

e

Private

p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

2/26/2010 7SIAM PP 10 -- Getting Multicore Performance with UPC

Multi-Dimensional Arrays

Shared-memory of Thread 1

Shared-memory of Thread 1

Shared-memory of Thread 2

Shared-memory of Thread 2

pointersA

Static 2-D array: shared [*] double A[M][N];

Dynamic 2-D array: shared [] double **A;

A[i]

A and pointers are private
and replicated on all threads.

A[i][j]

2/26/2010 8SIAM PP 10 -- Getting Multicore Performance with UPC

UPC Example of Jacobi

• Good spatial locality
• Mostly local memory accesses
• No explicit communication ghost-zone management

shared [ngrid*ngrid/THREADS] double u[ngrid][ngrid];

shared [ngrid*ngrid/THREADS] double unew[ngrid][ngrid];

shared [ngrid*ngrid/THREADS] double f[ngrid][ngrid];

upc_forall(int i=1; i<n; i++; &unew[i][0]) {

for(int j=1; j<n; j++) {

utmp = 0.25 * (u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] -

h*h*f[i][j]); /* 5-point stencil */

unew[i][j] = omega * utmp + (1.0-omega)*u[i][j];

}

}

2/26/2010 9SIAM PP 10 -- Getting Multicore Performance with UPC

UPC Example of Random Access

shared uint64 Table[TableSize]; /* cyclic distribution */

uint64 i, ran;

/* owner computes, iteration matches data distribution */

upc_forall (i = 0; i < TableSize; i++; i) Table[i] = i;

upc_barrier; /* synchronization */

ran = starts(NUPDATE / THREADS * MYTHREAD); /* ran. seed */

for (i = MYTHREAD; i < NUPDATE; i+=THREADS) /* SPMD */

{

ran = (ran << 1) ^ (((int64_1) ran < 0) ? POLY : 0);

Table[ran & (TableSize-1)] = Table[ran & (TableSize-1)] ^ ran;

}

upc_barrier; /* synchronization */

2/26/2010 10SIAM PP 10 -- Getting Multicore Performance with UPC

UPC Parallel DGEMM

• Transfer data in large blocks (use upc_memcpy)

• Use optimized BLAS dgemm (e.g., Intel MKL)

• Use non-blocking collective communication if
available (e.g., row and column broadcasts)

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

= X

2/26/2010 11SIAM PP 10 -- Getting Multicore Performance with UPC

Matrix-Multiplication on Cray XT4

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
Fl

o
p

s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

2/26/2010 12SIAM PP 10 -- Getting Multicore Performance with UPC

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Driver and OS Libraries

Translated C code with Runtime Calls

H
ar

d
w

ar
e

D
ep

e
n

d
an

t Lan
gu

age D
ep

e
n

d
an

t

2/26/2010 13SIAM PP 10 -- Getting Multicore Performance with UPC

Berkeley UPC Features

• Data transfer for complex data types (vector,
indexed, stride)

• Non-blocking memory copy

• Point-to-point synchronization

• Remote atomic operations

• Active Messages

• Extension to UPC collectives

• Portable timers

2/26/2010 14SIAM PP 10 -- Getting Multicore Performance with UPC

Process vs. Threads

CPU CPU CPU CPU

Physical Shared-memory Virtual Address Space

Map UPC threads to Processes Map UPC threads to Pthreads

2/26/2010 15SIAM PP 10 -- Getting Multicore Performance with UPC

Processes with Shared Memory

0

500

1000

1500

2000

2500

3000

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

B
an

d
w

id
th

 (
M

B
/s

)

Data Chunk Size (in Bytes)

Aggregate Bandwidth

(32,1) (32,2) (32,4)

(32,8) (32,16)

Figure from Filip Blagojevic

(#UPC Threads, #Pthreads)

2/26/2010 16SIAM PP 10 -- Getting Multicore Performance with UPC

Process vs. Threads

0%

10%

20%

30%

40%

50%

60%

70%

(32,2) (32,4) (32,8) (32,16)

(#UPC Threads, #Pthreads)

GUPS Speedup over (32,1)

0

0.05

0.1

0.15

0.2

0.25

0.3

(32,2) (32,4) (32,8) (32,16)

(#UPC Threads, #Pthreads)

PSEARCH Speedup over (32,1)

Figures from Filip Blagojevic
2/26/2010 17SIAM PP 10 -- Getting Multicore Performance with UPC

Multi-threaded Collective
Communication

• Enhance both productivity and performance

• Performance Auto-tuning
– Offline tuning for platform common characteristics

– Online tuning Optimize for application runtime
characteristics

• Multi-threaded implementation

– Lower context switching overhead

– Faster shared data access

2/26/2010 18SIAM PP 10 -- Getting Multicore Performance with UPC

best root: 4

Barrier on AMD Opteron (32 cores)

0

500

1000

1500

2000

2500

3000

packed spread rand

B
ar

ri
e

r
Ex

e
cu

ti
o

n
 T

im
e

 (
n

s)

Thread Layout

Thread 0 max minbest root: 24

best root: 18

Figure from Rajesh Nishtala

2/26/2010 19SIAM PP 10 -- Getting Multicore Performance with UPC

Broadcast on Sun Niagara2 (128
threads)

Figure from Rajesh Nishtala

2/26/2010 20SIAM PP 10 -- Getting Multicore Performance with UPC

Scheduling and Load Balancing

• Over-subscription
– Run more logical threads than physical cores

– Moderate performance improvement if
synchronization intervals are not too small

• Speed balancing
– User-level thread scheduling based on thread progress

– Better system throughput in shared environments

• Cooperative thread scheduling
– Good for event-driven type of applications

– Accelerators, e.g., CELL processor

2/26/2010 21SIAM PP 10 -- Getting Multicore Performance with UPC

NPB UPC on Intel (16 cores)

Oversubscription on Multicore Processors, Costin Iancu, Steven Hofmeyr, Yili Zheng and Filip Blagojevic. IPDPS 2010.

2/26/2010 22SIAM PP 10 -- Getting Multicore Performance with UPC

NPB UPC on AMD (16 cores)

2/26/2010 23SIAM PP 10 -- Getting Multicore Performance with UPC

Tips for UPC Programming

• Coarsen synchronization intervals
• Hierarchically map UPC threads to OS processes

and Pthreads
• Pin processes and threads to cores to minimize

migration cost
• Take advantage of data locality in the application

level
• Overlapping communication and computation
• Use tuned math libraries, e.g., AMD ACML, IBM

ESSL, Intel MKL

2/26/2010 24SIAM PP 10 -- Getting Multicore Performance with UPC

Tools for Debugging and Tuning UPC
Applications on Multi-core Systems

• Same as other multi-process and multi-thread
programs

– Open Source tools: PAPI, TAU, Valgrind

– Commercial tools, e.g. Intel VTUNE, TotalView

• BUPC tracing tool for analyzing the
communication behavior of UPC programs

• Parallel Performance Wizard (PPW)

– http://ppw.hcs.ufl.edu/

2/26/2010 25SIAM PP 10 -- Getting Multicore Performance with UPC

Summary

• Global address space improves productivity

• Data partitioning enables performance
optimizations

• Interoperable with other programming models
and languages including MPI, FORTRAN, C++

• Growing UPC community with actively developed
and maintained software implementations

– Berkeley UPC and GASNet: http://upc.lbl.gov

– Other UPC compilers: Cray UPC, GCC UPC, HP UPC,
IBM UPC, MTU UPC

2/26/2010 26SIAM PP 10 -- Getting Multicore Performance with UPC

